清华团队提出新型脑机接口,功效提升400多倍

2020-09-30 16:04:34 DeepTech深科技

现有大多数脑机接口的信号处理模块采用的是传统的冯 · 诺伊曼结构。处理信号的过程中,需要将模拟神经信号转换成数字信号,之后再进行处理。这种信号处理方式与大脑的工作方式不同,转换和压缩会造成大功耗和信号延迟,还会导致信息丢失、难处理并行计算,从而降低信号处理的准确性。

现在,科学家开始尝试仿生设计,以更好地处理大容量的神经模拟信号。

清华大学微纳电子系、未来芯片技术高精尖创新中心的钱鹤、吴华强教授团队与医学院洪波教授团队最近实现了一种新方案——基于记忆电阻器的神经信号分析系统。相关成果于 8 月 25 日发表在 Nature Communication 上。

图 | 利用忆阻器阵列进行神经信号分析,实现高效的脑机接口 (来源:Nature Communications)

这是钱鹤和吴化强团队关于忆阻器应用的新成果。此前在今年 2 月份,其团队研制了基于多个忆阻器阵列的存算一体系统,在该系统上高效运行了卷积神经网络算法,成功验证了图像识别功能。相关成果在《自然》上在线发表。

图 | 全硬件实现的忆阻器卷积神经网络(来源:Nature )

吴华强教授表示,忆阻器是一种新型信息处理器件,其工作机理与人脑中的神经突触、神经元等具有一定的相似性,基于忆阻器(Memristor)的神经形态计算可以突破传统计算架构,在实现高并行度的同时显著降低功耗。

图 | 基于忆阻器的新型脑机接口(来源:论文)

忆阻器(Memristor),即记忆电阻器,其命名由 Memory(记忆)和 Resistor(电阻)合成。1971 年,加州大学伯克利分校教授蔡少棠根据电子学理论预言,存在继电阻、电容、电感之后的第四种电路基本元件,这种基本元件能够表示磁通与电荷之间的关系。

2008 年,惠普公司以两层二氧化钛薄膜制作出了忆阻器元件,当电流通过时,电阻会随之发生改变。电流停止后,电阻会停留在此前的值,直到接收到反向的电流电阻值才会被重写。这种对电流状态变化的捕捉,与大脑突触的可塑性具有相似性,并且两者都是通过离子运动实现的。

忆阻器的特性让其能直接处理模拟信号,通过忆阻器的阵列,能够进一步实现信号的并行处理,这也是大脑的关键特征之一。

吴华强教授表示,此次是微电子和医学领域的交叉研究与合作,为脑机接口技术带来了更多的可能性。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐

热门新闻